
Computing Logarithmic Parts by Evaluation Homomorphisms∗

Hao Du

School of Sciences,

Beijing University of Posts and Telecommunications

Beijing (102206), China

haodu@bupt.edu.cn

Yiman Gao

Key Lab of Mathematics Mechanization, AMSS,

University of Chinese Academy of Sciences,

Chinese Academy of Sciences, Beijing (100190), China

ymgao@amss.ac.cn

Jing Guo

Data Communication Science and Technology

Research Institute, Beijing (100191), China

JingG@amss.ac.cn

Ziming Li

Key Lab of Mathematics Mechanization, AMSS,

University of Chinese Academy of Sciences,

Chinese Academy of Sciences, Beijing (100190), China

zmli@mmrc.iss.ac.cn

ABSTRACT
We present two evaluation-based algorithms: one for computing

logarithmic parts and the other for determining complete logarith-

mic parts in transcendental function integration. Empirical results

illustrate that the new algorithms are markedly faster than those

based respectively on resultants, the contraction of ideals, subresul-

tants and Gröbner bases. They may be used to accelerate Risch’s

algorithm for transcendental integrands, and help us to compute

elementary integrals over logarithmic towers efficiently.

CCS CONCEPTS
• Computing methodologies→ Algebraic algorithms.

KEYWORDS
Additive decomposition, Elementary integral, Evaluation homo-

morphism, Logarithmic part, Symbolic integration

ACM Reference Format:
Hao Du, Yiman Gao, Jing Guo, and Ziming Li. 2023. Computing Logarith-

mic Parts by Evaluation Homomorphisms. In International Symposium on
Symbolic and Algebraic Computation 2023 (ISSAC 2023), July 24–27, 2023,
Tromsø, Norway. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/

3597066.3597067

1 INTRODUCTION
Developing methods for indefinite integration has been active

and challenging ever since the invention of calculus. It is neatly-

formulated in terms of differential algebra by Ritt in [16] and Rosen-

licht in [17, 18]. Risch [14, 15] presents a systematic approach to

determining whether an elementary function has an elementary

integral. See [13] for commentaries and details. His papers contain

a complete algorithm for transcendental elementary integrands,

in which computing logarithmic parts is a fundamental building

∗
H. Du was partially supported by an NSFC grant (# 12201065). Y. Gao, J. Guo and Z.

Li were partially supported by two NFSC grants (# 11971029 , 12271511).

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ISSAC 2023, July 24–27, 2023, Tromsø, Norway
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0039-2/23/07.

https://doi.org/10.1145/3597066.3597067

block. The algorithm is described, refined, improved and extended

in [1, 3, 6, 11, 19, 20]. Its implementations are available in computer

algebra systems, e.g. Maple and Mathematica.

The integral of a rational function in Q(𝑥) is the sum of another

rational function and a linear combination of logarithmic functions

over Q. Such a linear combination is called the logarithmic part

of the integral. It can be found by expanding a Rothstein-Trager

resultant and performing gcd-computation over several algebraic

number fields. See [21], [6, §11.5] and [1, §2.4] for details. Two

alternative algorithms are presented to avoid gcd-computation over

algebraic number fields in [9, 10] and [2], respectively. The former

uses the subresultant algorithm. The latter needs to compute a

Gröbner basis of some zero-dimensional ideal.

Logarithmic parts, Rothstein-Trager resultants and the above-

mentioned algorithms are valid for monomial extensions of various

kinds due to the results in [20, Theorem 2], [1, §5.6] and [12, The-

orem 4]. Moreover, Lemma 6 in [12] leads to another algorithm

using the contraction of ideals. Elements of monomial extensions

are multivariate polynomials and their fractions. So intermediate

expression swell frequently occurs when resultants, subresultants

or Gröbner bases are computed in such extensions.

For an element 𝑓 in a monomial extension, the logarithmic part

of its integral can be constructed by the Rothstein-Trager resultant

of 𝑓 , which is a univariate polynomial over a differential field. The

resultant can be factored as a product 𝑢 𝑣 , where 𝑢 is a monic poly-

nomial with constant coefficients, and each nontrivial monic factor

of 𝑣 has nonconstant coefficients. The logarithmic part is deter-

mined by 𝑢, which is much smaller in size than the resultant. This

observation makes it possible to control intermediate expression

swell. We present two evaluation-based algorithms for computing

logarithmic parts and for determining complete logarithmic parts,

respectively. Some preliminary results of this paper are contained

in the doctoral dissertation of the third author [7].

We had focused merely on determining complete logarithmic

parts in Risch’s algorithm. James Davenport raised a question about

how to compute logarithmic parts in the same manner when part

of this work was presented at the 27th International Conference

on Applications of Computer Algebra, Gebze-Istanbul, 2022. His

question widened the scope of this project and simplified our results.

The rest of this paper is organised as follows. We review basic

notions for symbolic integration in Section 2, and define logarithmic

parts in terms of residues in Section 3. Evaluation-based algorithms

https://doi.org/10.1145/3597066.3597067
https://doi.org/10.1145/3597066.3597067
https://doi.org/10.1145/3597066.3597067

ISSAC 2023, July 24–27, 2023, Tromsø, Norway H. Du, Y. Gao, J. Guo, and Z. Li

and their comparison with known ones are presented in Section 4.

With the help of the additive decomposition in [4], we compute

elementary integrals over logarithmic towers, and compare our

method with the Maple function int in Section 5.

2 PRELIMINARIES
Let 𝐹 be a field. For a nonzero polynomial 𝑝 ∈ 𝐹 [𝑡], deg𝑡 (𝑝) and
lc𝑡 (𝑝) stand for its degree and leading coefficient, respectively. We

say that 𝑝 ismonic if lc𝑡 (𝑝) = 1. Themonic associate of 𝑝 is defined to
be 𝑝/lc𝑡 (𝑝), which is denoted by ma𝑡 (𝑝). For 𝑝, 𝑞 ∈ 𝐹 [𝑡] \ {0} with
max(deg𝑡 (𝑝), deg𝑡 (𝑞)) > 0, their Sylvester resultant is denoted

by resultant𝑡 (𝑝, 𝑞). An element of 𝐹 (𝑡) is said to be 𝑡-proper if the
degree of its numerator is lower than that of the denominator. In

particular, zero is 𝑡-proper.

A derivation 𝛿 on a field 𝐹 is an additive map from 𝐹 to itself

such that for all 𝑥,𝑦 ∈ 𝐹 , 𝛿 (𝑥𝑦) = 𝛿 (𝑥)𝑦 + 𝑥𝛿 (𝑦). The pair (𝐹, 𝛿) is
called a differential field. An element 𝑐 of 𝐹 is called a constant if
𝛿 (𝑐) = 0. Denote {𝑐 ∈ 𝐹 | 𝛿 (𝑐) = 0} by 𝐶𝐹 , which is a subfield of 𝐹 .

Let (𝐹, 𝛿) and (𝐸,Δ) be two differential fields. We say that 𝐸 is a

differential field extension of 𝐹 , or, equivalently, 𝐹 is a differential
subfield of 𝐸 if 𝐹 is a subfield of 𝐸 and 𝛿 = Δ|𝐸 . We still denote the

derivation Δ on 𝐸 by 𝛿 when there is no confusion arising.

Notation. Throughout this paper we assume that (𝐹, ′) is a differ-
ential field of characteristic zero.

The derivation of 𝐹 can be uniquely extended to its algebraic

closure 𝐹 , and 𝐶
𝐹

= 𝐶𝐹 by [1, Corollary 3.3.1]. An element 𝑓

of 𝐹 is called a logarithmic derivative in 𝐹 if it is equal to 𝑔′/𝑔 for
some nonzero 𝑔 ∈ 𝐹 . Denote by L(𝐹) the linear subspace spanned
by all logarithmic derivatives over 𝐶𝐹 . For 𝑓 ∈ L(𝐹), there exist
𝑐1, . . . , 𝑐𝑛 ∈ 𝐶𝐹 and 𝑔1, . . . , 𝑔𝑛 ∈ 𝐹 \ {0} such that 𝑓 =

∑𝑛
𝑖=1 𝑐𝑖𝑔

′
𝑖
/𝑔𝑖 .

Then the integral of 𝑓 can be expressed as

∑𝑛
𝑖=1 𝑐𝑖 log(𝑔𝑖), where

log(𝑔𝑖) stands for an element in some differential field extension

of 𝐹 whose derivative is equal to 𝑔′
𝑖
/𝑔𝑖 .

Let 𝑡 belong to a differential field extension of 𝐹 . Then 𝑡 is prim-
itive if 𝑡 ′ ∈ 𝐹 , and 𝑡 is hyperexponential if 𝑡 ′/𝑡 ∈ 𝐹 . We call 𝑡 a

monomial over 𝐹 if it is transcendental over 𝐹 and its derivative

belongs to 𝐹 [𝑡].
Let 𝑡 be a monomial over 𝐹 . Then 𝐹 (𝑡) is called a monomial

extension of 𝐹 , and 𝑡 is said to be regular if𝐶𝐹 = 𝐶𝐹 (𝑡) . The ring 𝐹 [𝑡]
is closed under the derivation

′
. A polynomial 𝑝 ∈ 𝐹 [𝑡] is normal if

gcd(𝑝, 𝑝′) = 1, and it is special if 𝑝 | 𝑝′ according to [1, Definition

3.4.2]. Normal polynomials are squarefree. Squarefree polynomials

are normal if 𝑡 is both primitive and regular. An element 𝑓 ∈ 𝐹 (𝑡)
is said to be 𝑡-simple if it is 𝑡-proper and has a normal denominator.

Zero is 𝑡-simple because 1 is both normal and special.

Example 2.1. Let𝐶 be a field of characteristic 0. Then (𝐶 (𝑥), 𝑑/𝑑𝑥)
is a differential field whose subfield of constants equals 𝐶 .

The subspace L(C(𝑥)) consists of all 𝑥-simple functions.
Let 𝑡 = exp(𝑥). Then 𝑡 +1 is normal and 𝑡 is special as polynomials

in C(𝑥) [𝑡]. So 1/(𝑡 + 1) is 𝑡-simple but 1/𝑡 is not.

For a nonzero polynomial 𝑝 ∈ 𝐹 [𝑧], we can uniquely decom-

pose 𝑝 as the product of 𝑝𝑆 and 𝑝𝑁 , where 𝑝𝑆 is a monic polynomial

in 𝐶𝐹 [𝑧] and 𝑝𝑁 is either an element of 𝐹 or a polynomial whose

monic factors have nonconstant coefficients. Regard 𝑧 as a constant

indeterminate. Then 𝑝𝑆 is special, and every squarefree factor of 𝑝𝑁

is normal. We call 𝑝𝑆 and 𝑝𝑁 the special and non-special parts of 𝑝 ,
respectively.

Example 2.2. Let 𝐹 be given in Example 2.1, and 𝑧 be an indeter-
minate over 𝐹 . We set 𝑧′ = 0. Then 𝐹 [𝑧] is a differential ring. Monic
special polynomials in 𝐹 [𝑧] are the elements of 𝐶 [𝑧].

Let 𝑝 = 𝑥𝑧2−𝑧/𝑥 +𝑧−𝑥𝑧+1/𝑥−1. Then its special and non-special
parts are 𝑧 − 1 and 𝑥𝑧 − 1/𝑥 + 1, respectively. They can be computed
by either Algorithm SplitFactor in [1, §3.5] or by taking the content
and primitive part of the numerator of 𝑝 with respect to 𝑥 .

3 LOGARITHMIC PARTS
Let 𝑡 be a monomial over 𝐹 , and 𝑓 ∈ 𝐹 (𝑡) be nonzero and 𝑡-simple.

Write 𝑓 as 𝑎/𝑏, where 𝑎, 𝑏 ∈ 𝐹 [𝑡] and gcd(𝑎, 𝑏) = 1. For a root 𝛼

of 𝑏, the residue of 𝑓 at 𝛼 is defined to be

residue𝑡 (𝑓 , 𝛼) :=
𝑎(𝛼)
𝑏′ (𝛼) ∈ 𝐹 . (1)

The normality of 𝑏 implies 𝑏′ (𝛼) ≠ 0. The residue is independent

of the choices of denominators by a straightforward verification.

Moreover, gcd(𝑎, 𝑏) = 1 implies residue𝑡 (𝑓 , 𝛼) ≠ 0. Our definition

of residues is consistent with [1, Definition 4.4.1], which defines

a residue as a natural projection. It appears that canonical images

are more convenient to describe algorithms.

Let 𝛽 be a residue of 𝑓 and 𝛼1, . . . , 𝛼𝑘 be the distinct roots of 𝑏.

The number of the appearances of 𝛽 in the sequence:

residue𝑡 (𝑓 , 𝛼1), residue𝑡 (𝑓 , 𝛼2), . . . , residue𝑡 (𝑓 , 𝛼𝑘)
is called the multiplicity of 𝛽 in [9]. Let 𝑧 be a constant indetermi-

nate over 𝐹 (𝑡). The Rothstein-Trager resultant of 𝑓 is defined to be

resultant𝑡 (𝑎 − 𝑧𝑏′, 𝑏) and is denoted by 𝑅𝑓 . It is a nonzero polyno-

mial in 𝐹 [𝑧] by the assumption that gcd(𝑎, 𝑏) = gcd(𝑏,𝑏′) = 1.

The following lemma collects relevant results in [1, Theorem

4.4.3] and [9, Proposition 2]. It also describes the degree and leading

coefficient of a Rothstein-Trager resultant.

Lemma 3.1. Let 𝑡 be a monomial over 𝐹 , and 𝑓 be a nonzero
and 𝑡-simple element of 𝐹 (𝑡). Write 𝑓 as 𝑎/𝑏 with 𝑎, 𝑏 ∈ 𝐹 [𝑡] and
gcd(𝑎, 𝑏) = 1. Assume that 𝑘 = deg𝑡 (𝑏) and that 𝛼1, . . . , 𝛼𝑘 ∈ 𝐹 are
the roots of 𝑏. Then the following assertions hold.

(i) 𝑓 =

𝑘∑︁
𝑖=1

residue𝑡 (𝑓 , 𝛼𝑖)
(𝑡 − 𝛼𝑖)′
𝑡 − 𝛼𝑖

+ 𝑢 for some 𝑢 ∈ 𝐹 [𝑡].

(ii) Let 𝛽1, . . . , 𝛽ℓ be the distinct residues of 𝑓 with respective mul-
tiplicities𝑚1, . . . ,𝑚ℓ , and let 𝑔 𝑗 be the monic greatest common
divisor of 𝑎 − 𝛽 𝑗𝑏′ and 𝑏 in 𝐹 (𝛽 𝑗) [𝑡] for 𝑗 = 1, . . . , ℓ .With 𝑢
given in (i), we have

𝑓 =

ℓ∑︁
𝑗=1

𝛽 𝑗

𝑔′
𝑗

𝑔 𝑗
+ 𝑢 and 𝑚 𝑗 = deg𝑡 (𝑔 𝑗).

(iii)
1
deg𝑧 (𝑅𝑓) = 𝑘 . With the 𝛽 𝑗 and𝑚 𝑗 in (ii), we have

𝑅𝑓 = (−1)𝑛 lc𝑡 (𝑏)𝑑 resultant𝑡 (𝑏′, 𝑏)
ℓ∏
𝑗=1

(𝑧 − 𝛽 𝑗)𝑚 𝑗 ,

where 𝑛 = 𝑘 (𝑑 + 1) and 𝑑 = deg𝑡 (𝑎 − 𝑧𝑏′) − deg𝑡 (𝑏′).
1
Shaoshi Chen reminded us that the assertions in (iii) were obtained in a seminar on

symbolic integration at our lab in 2008.

Computing Logarithmic Parts by Evaluation Homomorphisms ISSAC 2023, July 24–27, 2023, Tromsø, Norway

Proof. (i) The irreducible partial fraction decomposition of 𝑓 is

𝑘∑︁
𝑖=1

residue𝑡 (𝑓 , 𝛼𝑖)
𝛾𝑖

𝑡 − 𝛼𝑖
, where 𝛾𝑖 = (𝑡 − 𝛼𝑖)′ |𝑡=𝛼𝑖 ,

by (1) and a direct calculation. Then

𝑢 =

𝑘∑︁
𝑖=1

residue𝑡 (𝑓 , 𝛼𝑖)
𝛾𝑖 − (𝑡 − 𝛼𝑖)′

𝑡 − 𝛼𝑖
.

So 𝑢 ∈ 𝐹 [𝑡] by (𝑡 − 𝛼𝑖) | 𝛾𝑖 − (𝑡 − 𝛼𝑖)′ for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑘 .
Moreover, 𝑢 ∈ 𝐹 [𝑡] because 𝑢 is symmetric in 𝛼1, . . . , 𝛼𝑘 over 𝐹 .

(ii) For all 𝑗 with 1 ≤ 𝑗 ≤ ℓ , we let

ℎ 𝑗 =
∏

residue𝑡 (𝑓 ,𝛼𝑖)=𝛽 𝑗

(𝑡 − 𝛼𝑖) . (2)

By (i), 𝑓 =
∑ℓ

𝑗=1 𝛽 𝑗ℎ
′
𝑗
/ℎ 𝑗 + 𝑢. Note that ℎ 𝑗 = 𝑔 𝑗 , because they are

monic, squarefree and have the same roots. So (ii) holds.

(iii) Let 𝜆 = lc𝑡 (𝑏). Expressing 𝑅𝑓 by the roots of 𝑏 yields

𝑅𝑓 = (−1)𝑘𝑒𝜆𝑒
𝑘∏
𝑖=1

(𝑎(𝛼𝑖) − 𝑧𝑏′ (𝛼𝑖)),

where 𝑒 = deg𝑡 (𝑎 − 𝑧𝑏′). By (1), we have

𝑅𝑓 = (−1)𝑘𝑒+𝑘𝜆𝑒
(

𝑘∏
𝑖=1

𝑏′ (𝛼𝑖)
) (

𝑘∏
𝑖=1

(𝑧 − residue𝑡 (𝑓 , 𝛼𝑖))
)
.

Since 𝑏 is normal, deg𝑧 (𝑅𝑓) = 𝑘 = deg𝑡 (𝑏). Moreover,

𝑅𝑓 = (−1)𝑘𝑒+𝑘𝜆𝑒
(

𝑘∏
𝑖=1

𝑏′ (𝛼𝑖)
) ©­«

ℓ∏
𝑗=1

(𝑧 − 𝛽 𝑗)𝑚 𝑗 ª®¬ ,
which, together with

resultant𝑡 (𝑏′, 𝑏) = (−1)𝑘 deg𝑡 (𝑏′)𝜆deg𝑡 (𝑏
′)

(
𝑘∏
𝑖=1

𝑏′ (𝛼𝑖)
)
,

implies that (iii) holds. □

With the notation introduced in Lemma 3.1, we assume further

that 𝛽1, . . . , 𝛽𝑠 ∈ 𝐶𝐹 and 𝛽𝑠+1, . . . , 𝛽ℓ ∉ 𝐶𝐹 . Then

𝑓 =

𝑠∑︁
𝑗=1

𝛽 𝑗

𝑔′
𝑗

𝑔 𝑗
+

ℓ∑︁
𝑗=𝑠+1

𝛽 𝑗

𝑔′
𝑗

𝑔 𝑗
+ 𝑢

for some 𝑢 ∈ 𝐹 [𝑡] by Lemma 3.1 (ii). Then∫
𝑓 =

𝑠∑︁
𝑗=1

𝛽 𝑗 log(𝑔 𝑗) +
ℓ∑︁

𝑗=𝑠+1

∫
𝛽 𝑗

𝑔′
𝑗

𝑔 𝑗
+

∫
𝑢.

Definition 3.2. We call
∑𝑠

𝑗=1 𝛽 𝑗 log(𝑔 𝑗) the logarithmic part of

the integral of 𝑓 with respect to 𝑡 . When 𝑠 = ℓ , the logarithmic part
is said to be complete.

Proposition 3.3. Let𝐶 = 𝐶𝐹 , 𝑡 be a monomial over 𝐹 , and 𝑓 be a
nonzero and 𝑡-simple element of 𝐹 (𝑡). Then the following assertions
are equivalent.

(i) The integral of 𝑓 has a complete logarithmic part.
(ii) All residues of 𝑓 belong to 𝐶 .
(iii) All roots of 𝑅𝑓 belong to 𝐶 .
(iv) The monic associate of 𝑅𝑓 belongs to 𝐶 [𝑧].

Assume further that 𝑡 is primitive and regular over 𝐹 . Then the above
assertions are equivalent to each of the following assertions.

(v) The integral of 𝑓 is equal to its logarithmic part.
(vi) The integral of 𝑓 is elementary over 𝐹 (𝑡).

Proof. The equivalences among (i), (ii), (iii) and (iv) are imme-

diate from Lemma 3.1.

In the rest of this proof, we set 𝑓 = 𝑎/𝑏, where 𝑎, 𝑏 ∈ 𝐹 [𝑡] and
gcd(𝑎, 𝑏) = 1. Furthermore, let 𝛽1, . . . , 𝛽ℓ be the distinct residues of

𝑓 , where 𝛽1, . . . , 𝛽𝑠 ∈ 𝐶 and 𝛽𝑠+1, . . . , 𝛽ℓ ∉ 𝐶 . Furthermore, let 𝑡 be

primitive and regular over 𝐹 .

Since 𝑡 is primitive, (𝑡 − 𝛼)′/(𝑡 − 𝛼) is 𝑡-simple for every 𝛼 ∈ 𝐹 .
By Lemma 3.1 (i) and (ii), 𝑓 =

∑ℓ
𝑗=1 𝛽 𝑗𝑔

′
𝑗
/𝑔 𝑗 , where 𝑔 𝑗 is the monic

greatest common divisor of 𝑎 − 𝛽 𝑗𝑏′ and 𝑏. Then (ii) implies (v) due

to 𝑠 = ℓ . Assume that (v) holds. So does (vi), because the integral

of 𝑓 is equal to
∑𝑠

𝑗=1 𝛽 𝑗 log(𝑔 𝑗). Assume that (vi) holds. Then (vi)

implies (ii) by [12, Theorem 3 (ii)], □

Theorem 3 in [12] corrects Theorem 5.6.1 in [1] by adding an

assumption on regularity of 𝑡 . Such an assumption is also indis-

pensable in the above proposition, as illustrated below.

Example 3.4. Let 𝐹 = C(𝑥) and 𝑡 be a primitive monomial with
𝑡 ′ = 0. Then 𝑡 is not regular. It is direct to see that 𝑓 (𝑡) = 𝑡/(𝑡2 + 𝑥)
is 𝑡-simple and that 𝑅𝑓 = 𝑧2 + 𝑥 . So none of the residues of 𝑓 is a
constant. But

∫
𝑓 = 𝑡 log(𝑡2 + 𝑥), which is elementary over 𝐹 (𝑡).

4 ALGORITHMS
This section consists of three parts. First, we review known algo-

rithms for computing logarithmic parts. Second, we present new

algorithms using evaluation homomorphisms. At last, empirical

results are given.

In this section, we let𝐶 = 𝐶𝐹 , 𝑡 be a monomial over 𝐹 , and 𝑓 be a

nonzero and 𝑡-simple element of 𝐹 (𝑡). To describe algorithms con-

cisely, we further set 𝑓 = 𝑎/𝑏, where 𝑎, 𝑏 ∈ 𝐹 [𝑡] and gcd(𝑎, 𝑏) = 1.

Moreover, let 𝑧 be a constant indeterminate over 𝐹 (𝑡). For an irre-

ducible polynomial 𝑝 ∈ 𝐹 [𝑧], the monic greatest common divisor of

𝑎 − 𝑧𝑏′ and 𝑏 over 𝐹 [𝑧]/(𝑝) is denoted by gcd(𝑎 − 𝑧𝑏′, 𝑏) mod 𝑝.

All the algorithms for computing logarithmic parts have the

same input and output. Their input consists of a monomial exten-

sion 𝐹 (𝑡) and an integrand 𝑓 ∈ 𝐹 (𝑡), and the output consists of the

logarithmic part of the integral of 𝑓 with respect to 𝑡 and a boolean

value indicating whether the logarithmic part is complete.

The first algorithm, named RT, expands 𝑅𝑓 and computes the

special part of ma𝑧 (𝑅𝑓) in 𝐹 [𝑧]. It then computes irreducible factors

𝑝1, . . . 𝑝𝑘 of the special part over 𝐶 , and 𝑔𝑖 (𝑧, 𝑡) = gcd(𝑎 − 𝑧𝑏′, 𝑏)
mod 𝑝𝑖 , 𝑖 = 1, . . . , 𝑘 . Then the logarithmic part is equal to

𝑘∑︁
𝑖=1

∑︁
𝑝𝑖 (𝛼𝑖,𝑗)=0

𝛼𝑖, 𝑗 log(𝑔𝑖 (𝛼𝑖, 𝑗 , 𝑡)) .

By Proposition 3.3, the logarithmic part is complete if and only if

ma𝑧 (𝑅𝑓) belongs to 𝐶 [𝑧]. Algorithm RT is essentially the same as

Algorithm ResidueReduce based on Rothstein-Trager resultant

reduction in [1, §5.6].

The second algorithm, named CI, is based on [12, Lemma 6],

which asserts that the squarefree part of ma𝑧 (𝑅𝑓) is the monic

generator of ⟨𝑎 − 𝑧𝑏′, 𝑏⟩ ∩ 𝐹 [𝑧], where ⟨𝑎 − 𝑧𝑏′, 𝑏⟩ stands for the

ISSAC 2023, July 24–27, 2023, Tromsø, Norway H. Du, Y. Gao, J. Guo, and Z. Li

algebraic ideal generated by 𝑎 −𝑧𝑏′ and 𝑏 in 𝐹 [𝑧, 𝑡]. By [12, Lemma

5], the ideal has a Gröbner basis {𝑏, 𝑧 − 𝑝𝑎} with respect to the

lexicographic order 𝑡 ≺ 𝑧, where 𝑝𝑏′ ≡ 1 mod 𝑏. The Gröbner

basis enables us to construct the generator by linear algebra. Then

we proceed as AlgorithmRTwith the generator instead of ma𝑧 (𝑅𝑓).
The third algorithm, named SR, is essentially the same as Algo-

rithm ResidueReduce based on Lazard-Rioboo-Rothstein-Trager

resultant reduction in [1, §5.6]. It computes a subresultant sequence

of𝑎−𝑧𝑏′ and𝑏 with respect to 𝑡 , and𝑅𝑓 . Then the algorithm extracts

the logarithmic part from the subresultant sequence by a carefully-

designed process involving splitting factorization, squarefree fac-

torization and gcd-computation in 𝐹 [𝑧]. But gcd-computation over

any algebraic extension of 𝐶 is not needed.

The fourth algorithm, named GB, is described in [12, Theorem

8]. It computes a minimal Gröbner basis of ⟨𝑎 − 𝑧𝑏′, 𝑏⟩ with re-

spect to the lexicographic ordering 𝑧 ≺ 𝑡 by the half-extended

Euclidean algorithm and linear algebra according to remarks on

[12, pp. 1294-1295]. Then the logarithmic part can be constructed

by taking leading coefficients and performing exact division. Gcd-

computation over any algebraic extension of𝐶 is not needed either.

Elimination techniques used in the above algorithms cause in-

termediate expression swell, as illustrated below.

Example 4.1. Let 𝐹 = Q(𝑥) and 𝑡 ′ = 1/𝑥 . Let

𝑎 =(64𝑥4 + 24𝑥3 − 24𝑥2 + 6𝑥)𝑡2 + (32𝑥4 + 88𝑥3 − 40𝑥2 + 8𝑥 − 1)𝑡
+ 16𝑥3 + 32𝑥2 − 22𝑥+2,

and 𝑏 be the product of 𝑥 (2𝑥 − 1)
(
4𝑥2 + 8𝑥 − 1

)
, (2𝑥 − 1)𝑡 + 1 and(

4𝑥2 + 8𝑥 − 1
)
𝑡2 + (4𝑥 + 4)𝑡 + 1. Then 𝑓 = 𝑎/𝑏 is 𝑡-simple. Using

Algorithm RT, we find

𝑅𝑓 = 𝑝 ·
(
𝑧 + 1

4

)
·
(
𝑧2 − 1

4

𝑧 − 1

16

)
︸ ︷︷ ︸

ma𝑧 (𝑅𝑓)

,

where 𝑝 ∈ Q[𝑥] is of degree 27 and is irrelevant to the logarithmic
part. The integral of 𝑓 has a complete logarithmic part

−1
4

log

(
𝑡 + 1

2𝑥 − 1

)
+

∑︁
𝛽2− 1

4
𝛽− 1

16
=0

𝛽 log

(
𝑡 + 2𝑥 − 8𝛽 + 3

4𝑥2 + 8𝑥 − 1

)
.

Applying Algorithm CI to 𝑓 , we need to compute the inverse of 𝑏′

modulo 𝑏. It is a quadratic polynomial in 𝑡 whose coefficients are
fractions of dense polynomials in Q[𝑥] with degrees up to 10. Simi-
larly, 𝑅𝑓 is computed in Algorithm SR, and the same modular inverse
is computed in Algorithm GB.

On the other hand, for almost all 𝛼 ∈ Q,

𝑅𝑓 (𝛼, 𝑧) = resultant𝑡 (𝑎(𝛼, 𝑡) − 𝑧𝑏′ (𝛼, 𝑡), 𝑏 (𝛼, 𝑡)).

Moreover, 𝑅𝑓 and 𝑅𝑓 (𝛼, 𝑧) have the same monic associate with respect
to 𝑧 whenever 𝛼 is not a root of 𝑝 . So a substitution for 𝑥 may enable
us to compute the monic associate by operations in Q[𝑧, 𝑡].

This example motivates us to compute the logarithmic part with-

out fully expanding 𝑅𝑓 . Our idea is to choose a subring of 𝐹 [𝑧, 𝑡]
and a homomorphism from the subring to𝐶 [𝑧, 𝑡] properly. Then we
compute the homomorphic image of 𝑅𝑓 in 𝐶 [𝑧, 𝑡]. Proposition 4.7

to be given in the sequel will guide us to find the logarithmic part

by the image, factorization over 𝐶 and gcd-computation over some

algebraic extensions of 𝐶 .

To this end, we impose some restrictions on 𝐹 . From now on, let 𝐹

be the field of rational functions over 𝐶 in several indeterminates,

say 𝑦1, . . . , 𝑦𝑛 . For example,𝐶 (𝑥, log(𝑥)) is understood as𝐶 (𝑦1, 𝑦2),
where 𝑦1 = 𝑥 and 𝑦2 = log(𝑥). The numerator and denominator

of an element in 𝐹 (𝑡) are taken to be two coprime polynomials

in 𝐶 [𝑦1, . . . , 𝑦𝑛, 𝑡], respectively.

Definition 4.2. Let v ∈ 𝐶𝑛 and the multiplicative subset

𝑆v = {𝑝 ∈ 𝐶 [𝑦1, . . . , 𝑦𝑛] | 𝑝 (v) ≠ 0}.
We call

𝜙v : 𝑆−1v 𝐶 [𝑦1, . . . , 𝑦𝑛, 𝑧, 𝑡] −→ 𝐶 [𝑧, 𝑡]

𝑔(𝑦1, . . . , 𝑦𝑛, 𝑧, 𝑡) ↦→ 𝑔(v, 𝑧, 𝑡) .
the (evaluation) homomorphism for v. We say that 𝜙v is lucky for 𝑓
if the following three conditions are satisfied:

(i) the denominator of 𝑏′ belongs to 𝑆v,
(ii) lc𝑡 (𝑎), lc𝑡 (𝑏), lc𝑡 (𝑏′) ∉ ker(𝜙v),
(iii) resultant𝑡 (𝑏′, 𝑏) ∉ ker(𝜙v).

Remark 4.3. There is an (𝑛 − 1)-dimensional algebraic set in 𝐶𝑛

containing every point v ∈ 𝐶𝑛 such that 𝜙v is unlucky for 𝑓 .

The first and second conditions can be verified easily. The next

lemma provides a way to verify the third.

Lemma 4.4. Let 𝑓 ∈ 𝐹 (𝑡) be nonzero and 𝑡-simple. Let v ∈ 𝐶𝑛
satisfy (i) and (ii) in Definition 4.2. Then 𝜙v is a lucky homomorphism
for 𝑓 if and only if deg𝑧 (𝜙v (𝑅𝑓)) = deg𝑡 𝑏.

Proof. Let 𝑘 = deg𝑡 (𝑏). By Definition 4.2 (i), 𝜙v is applicable to

both 𝑏′ and 𝑅𝑓 . By Lemma 3.1 (iii),

𝑅𝑓 = ± resultant𝑡 (𝑏,𝑏′) lc𝑡 (𝑏)𝑚𝑧𝑘 + terms of degrees < 𝑘

for some nonnegative integer𝑚. Thus, Definition 4.2 (ii) implies

that deg𝑧 (𝜙v (𝑅𝑓)) = 𝑘 if and only if Definition 4.2 (iii) holds. □

Below are some useful properties of lucky homomorphisms.

Lemma 4.5. Let 𝜙v be a lucky homomorphism for 𝑓 . Then the
following assertions hold.

(i) 𝜙v (𝑅𝑓) = resultant𝑡 (𝜙v (𝑎 − 𝑧𝑏′), 𝜙v (𝑏)).
(ii) 𝜙v (ma𝑧 (𝑅𝑓)) = ma𝑧 (𝜙v (𝑅𝑓)).
(iii) Let 𝑝𝑆 be the special part of ma𝑧 (𝑅𝑓). Then 𝑝𝑆 is a factor

of ma𝑧 (𝜙v (𝑅𝑓)) in 𝐶 [𝑧].

Proof. (i) By Definition 4.2 (ii), we have

deg𝑡 (𝑎 − 𝑧𝑏′) = deg𝑡 (𝜙v (𝑎 − 𝑧𝑏′)) and deg𝑡 (𝑏) = deg𝑡 (𝜙v (𝑏)) .
Then (i) holds, because the determinant formula for 𝑅𝑓 and that for

resultant𝑡 (𝜙v (𝑎 − 𝑧𝑏′), 𝜙v (𝑏)) have the same order.

(ii) Let 𝑞 be the denominator of 𝑏′. The denominator of ma𝑧 (𝑅𝑓)
divides a power of resultant𝑡 (𝑏′, 𝑏) lc𝑡 (𝑏)𝑞 by Lemma 3.1 (iii). It

follows from Definition 4.2 that ma𝑧 (𝑅𝑓) ∈ 𝑆−1v 𝐶 [𝑦1, . . . , 𝑦𝑛, 𝑧],
that is, 𝜙v is applicable to ma𝑧 (𝑅𝑓). Consequently,

𝜙v (𝑅𝑓) = 𝜙v (lc𝑧 (𝑅𝑓))𝜙v (ma𝑧 (𝑅𝑓)).
Then (ii) holds by taking the monic parts of the both sides of the

above equality.

Computing Logarithmic Parts by Evaluation Homomorphisms ISSAC 2023, July 24–27, 2023, Tromsø, Norway

(iii) Let 𝑝𝑁 be the non-special part of ma𝑧 (𝑅𝑓). We have that

𝑝𝑁 ∈ 𝑆−1v 𝐶 [𝑦1, . . . , 𝑦𝑛] [𝑧], because 𝑝𝑆 belongs to 𝐶 [𝑧]. It follows
from ma𝑧 (𝑓) = 𝑝𝑆 𝑝𝑁 and (ii) that

ma𝑧 (𝜙v (𝑅𝑓)) = 𝜙v (𝑝𝑆)𝜙v (𝑝𝑁) = 𝑝𝑆𝜙v (𝑝𝑁).
Therefore, 𝑝𝑆 | ma𝑧 (𝜙v (𝑅𝑓)). □

Example 4.6. In the situation described in Example 4.1, we further
let 𝐶 = Q, and 𝑦1 = 𝑥 . Then 𝜙1 is lucky for 𝑓 . Moreover,

𝜙1 (𝑎) = 70𝑡2 + 87𝑡 + 28, 𝜙1 (𝑏) = 11(𝑡 + 1) (11𝑡2 + 8𝑡 + 1)
and 𝜙1 (𝑏′) = 957𝑡3 + 1690𝑡2 + 925𝑡 + 148. By Lemma 4.5 (i),

𝜙1 (𝑅𝑓) = resultant𝑡

(
𝜙1 (𝑎) − 𝑧𝜙1 (𝑏′), 𝜙1 (𝑏)

)
,

which is 363170005(4𝑧 + 1) (16𝑧2 − 4𝑧 − 1). Its monic associate is
equal to the special part of ma𝑧 (𝑅𝑓) by Lemma 4.5 (ii).

The last step towards our evaluation-based algorithms consists

in forming a logarithmic part and deciding whether the logarithmic

part is complete.

Proposition 4.7. Let 𝑓 = 𝑎/𝑏 ∈ 𝐹 (𝑡) be nonzero and 𝑡-simple.
Assume that 𝑝 ∈ 𝐶 [𝑧] is the image of ma𝑧 (𝑅𝑓) under a lucky homo-
morphism for 𝑓 , and that the irreducible factorization of 𝑝 over 𝐶
is 𝑝𝑛1

1
· · · 𝑝𝑛𝑑

𝑑
. Set 𝑔𝑖 (𝑧, 𝑡) to be gcd(𝑎 − 𝑧𝑏′, 𝑏) mod 𝑝𝑖 , 𝑖 = 1, . . . , 𝑑 .

Then the logarithmic part of the integral of 𝑓 is
𝑑∑︁
𝑖=1

∑︁
𝑝𝑖 (𝛽)=0

𝛽 log(𝑔𝑖 (𝛽, 𝑡)),

where log(𝑔𝑖 (𝛽, 𝑡)) is set to be 0 if 𝑔𝑖 (𝛽, 𝑡) = 1. Moreover, we have
three equivalent assertions:

(i) the integral of 𝑓 has a complete logarithmic part,
(ii)

∑𝑑
𝑖=1 deg𝑧 (𝑝𝑖) deg𝑡 (𝑔𝑖) = deg𝑡 (𝑏),

(iii) deg𝑡 (𝑔𝑖) = 𝑛𝑖 , 𝑖 = 1, . . . , 𝑑 .

Proof. Let 𝑞𝑆 and 𝑞𝑁 be, respectively, the special and non-

special parts of ma𝑧 (𝑅𝑓). By Lemma 4.5 (iii), 𝑞𝑆 is a factor of 𝑝 . So

we further assume that the irreducible factors of 𝑞𝑆 are 𝑝1, . . . , 𝑝𝑒 ,

and that each of 𝑝𝑒+1, . . . , 𝑝𝑑 is coprime with 𝑞𝑆 . Since every monic

factor of 𝑞𝑁 has a nonconstant coefficient, each of 𝑝𝑒+1, . . . , 𝑝𝑑 is

coprime with ma𝑧 (𝑅𝑓). In other words, none of the 𝑝𝑒+1, . . . , 𝑝𝑑
divides 𝑅𝑓 . It follows that 𝑔 𝑗 (𝑧, 𝑡) = 1 for all 𝑗 with 𝑒 + 1 ≤ 𝑗 ≤ 𝑑 .
Then the logarithmic part of the integral of 𝑓 is

𝑒∑︁
𝑖=1

∑︁
𝑝𝑖 (𝛽)=0

𝛽 log(𝑔𝑖 (𝛽, 𝑡)) =
𝑑∑︁
𝑖=1

∑︁
𝑝𝑖 (𝛽)=0

𝛽 log(𝑔𝑖 (𝛽, 𝑡)) .

It remains to show that (i), (ii) and (iii) are equivalent.

By Lemma 3.1 (ii) and (iii), 𝑞𝑆 =
∏𝑒

𝑖=1

∏
𝑝𝑖 (𝛽)=0 (𝑧−𝛽)

deg𝑡 (𝑔𝑖) . It
follows from Lemma 4.5 (iii) and gcd(𝑝 𝑗 , 𝑅𝑓) = 1 with 𝑒 +1 ≤ 𝑗 ≤ 𝑑
that 𝑞𝑆 | 𝑝𝑛1

1
· · · 𝑝𝑛𝑒𝑒 . In addition, 𝑔 𝑗 = 1 for 𝑗 with 𝑒 + 1 ≤ 𝑗 ≤ 𝑑 . So

deg𝑡 (𝑔𝑖) ≤ 𝑛𝑖 , 𝑖 = 1, . . . , 𝑑 . (3)

Moreover, Lemma 3.1 (iii) and Lemma 4.4 imply that

deg𝑡 (𝑏) = deg𝑧 (𝑅𝑓) = deg𝑧 (𝑝) . (4)

Assume that (i) holds. Then 𝑒 and 𝑑 are equal. So 𝑝 = ma𝑧 (𝑅𝑓)
and 𝑞𝑆 = ma𝑧 (𝑅𝑓) since ma𝑧 (𝑅𝑓) ∈ 𝐶 [𝑧]. Consequently, we have
that deg𝑧 (𝑝) = deg𝑧 (𝑞𝑆), which, together with (4), implies (ii).

Assume that (ii) holds. By (4), we have

𝑑∑︁
𝑖=1

deg𝑧 (𝑝𝑖) deg𝑡 (𝑔𝑖) =
𝑑∑︁
𝑖=1

deg𝑧 (𝑝𝑖)𝑛𝑖 .

So deg𝑡 (𝑔𝑖) = 𝑛𝑖 for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑑 by (3), and thus (iii) holds.

Assume that (iii) holds. Then deg𝑡 (𝑔𝑖) > 0 for all 𝑖 with 1 ≤ 𝑖 ≤ 𝑑 .
So 𝑑 = 𝑒 . By Lemma 3.1 (ii), every root of 𝑝𝑖 is a residue of 𝑓 with

multiplicity 𝑛𝑖 . It follows from Lemma 3.1 (iii) that 𝑝 is a divisor

of 𝑅𝑓 . Hence, 𝑝 = ma𝑧 (𝑅𝑓) by (4) and lc𝑡 (𝑝) = 1. Therefore, (i)

holds by Proposition 3.3 (iv). □

We are ready to present an evaluation-based algorithm for com-

puting logarithmic parts.

Algorithm EH.
Input: a monomial extension 𝐹 (𝑡),

a nonzero and 𝑡-simple element 𝑓 ∈ 𝐹 (𝑡)
Output: 𝐿, the logarithmic part of

∫
𝑓 , and 𝐵 ∈ {0, 1} such

that 𝐵 = 1 if 𝐿 is complete, and 𝐵 = 0 otherwise

1. 𝑎 ← numerator of 𝑓 , 𝑏 ← denominator of 𝑓 ,𝑤 ← 0

2. [choose a lucky homomorphism]

for 𝑖 from 1 to 10 do
choose a point v ∈ 𝐶𝑛 randomly

if 𝜙v satisfies both (i) and (ii) in Definition 4.2 then
𝑟 ← resultant𝑡 (𝜙v (𝑎 − 𝑧𝑏′) , 𝜙v (𝑏))
if deg𝑧 (𝑟) = deg𝑡 (𝑏) then
𝑝 ← ma𝑧 (𝑟),𝑤 ← 1, break the loop

end if
end if

end do
3. [handle the unlucky case] if𝑤 = 0 then return the result

of Algorithm RT(𝐹 (𝑡), 𝑓) end if
4. find the irreducible factors 𝑝1, . . . , 𝑝𝑑 of 𝑝 over 𝐶

5. [form a logarithmic part] 𝐵 ← 0, 𝐿 ← 0,𝑚 ← 0,

for 𝑖 from 1 to 𝑑 do
𝑔𝑖 (𝑧, 𝑡) ← gcd(𝑎 − 𝑧𝑏′, 𝑏) mod 𝑝𝑖
𝐿 ← 𝐿 +∑

𝑝𝑖 (𝛽)=0 𝛽 log(𝑔𝑖 (𝛽, 𝑡))
𝑚 ←𝑚 + deg𝑧 (𝑝𝑖) deg𝑡 (𝑔𝑖)

end do
6. [check completeness] if𝑚 = deg𝑡 (𝑏) then 𝐵 ← 1 end if
7. return 𝐿, 𝐵

In step 2 of Algorithm EH, we try to choose a lucky homomor-

phism for 𝑓 . The verification of lucky homomorphisms in step 2

is correct by Lemma 4.4. If we have failed to choose any lucky ho-

momorphisms for ten times, then the algorithm will end by calling

Algorithm RT(𝐹 (𝑡), 𝑓) to compute the logarithmic part in step 3.

In fact, Algorithms CI, SR and GB can also be applied in step 3.

We choose Algorithm RT, because it performs better than other

algorithms in our experiments. The correctness of steps 4, 5 and 6

is immediate from Proposition 4.7.

We are not aware of any way to find a point v ∈ 𝐶𝑛 such that

𝜙v (resultant𝑡 (𝑏,𝑏′)) ≠ 0 without expanding the resultant. So we

opt for choosing points in𝐶𝑛 randomly and verify if there is a point

leading to a lucky homomorphism. This strategy succeeds with

probability one by Remark 4.3. We choose an evaluation point for

ISSAC 2023, July 24–27, 2023, Tromsø, Norway H. Du, Y. Gao, J. Guo, and Z. Li

ten times without any particular reason. Usually, the first choice

leads to a lucky homomorphism.

Next, we determine complete logarithmic parts. By Proposi-

tion 3.3, we modify Algorithms RT, CI, SR and GB as follows.

Whenever ma𝑧 (𝑅𝑓) or its squarefree part is obtained, we check

whether it belongs to𝐶 [𝑧]. If the answer is negative, then “false” is

returned. Otherwise, they proceed in the same way. The modified

algorithms are named RT∗, CI∗, SR∗ and GB∗, respectively.
An evaluation-based algorithm, named EH∗, determines com-

plete logarithmic parts. It can be regarded as AlgorithmEH equipped

with some early detections of the nonexistence of complete log-

arithmic parts. In its pseudo-code, “[]” stands for the empty list,

len(𝑆) for the length of a list 𝑆 , and 𝑆 [𝑖] for the 𝑖th element of 𝑆 .

Algorithm EH∗.
Input: a monomial extension 𝐹 (𝑡),

a nonzero and 𝑡-simple element 𝑓 ∈ 𝐹 (𝑡)
Output: false if 𝑓 has no complete logarithmic part;

the complete logarithmic part of

∫
𝑓 , otherwise

1. 𝑎 ← numerator of 𝑓 , 𝑏 ← denominator of 𝑓 , 𝑆 ← []
2. [choose lucky homomorphisms]

for 𝑖 from 1 to 10 do
choose a point v ∈ 𝐶𝑛 randomly

if 𝜙v satisfies both (i) and (ii) in Definition 4.2 then
𝑟 ← resultant𝑡 (𝜙v (𝑎 − 𝑧𝑏′) , 𝜙v (𝑏))
if deg𝑧 (𝑟) = deg𝑡 (𝑏) then append ma𝑧 (𝑟) to 𝑆

if len(𝑆) = 2 then break the loop end if
end if

end if
end do

3. [handle the unlucky case] if len(𝑆) < 2 then return the

result of Algorithm RT∗ (𝐹 (𝑡), 𝑓) end if
4. [detect the nonexistence of complete logarithmic parts]

if 𝑆 [1] ≠ 𝑆 [2] then return false end if
5. compute the irreducible factorization 𝑝

𝑛1

1
· · · 𝑝𝑛𝑑

𝑑
of 𝑆 [1]

over 𝐶

6. [form the complete logarithmic part] set 𝐿 ← 0

for 𝑖 from 1 to 𝑑 do
𝑔𝑖 (𝑧, 𝑡) ← gcd(𝑎 − 𝑧𝑏′, 𝑏) mod 𝑝𝑖
[detect the nonexistence of complete logarithmic parts]
if deg𝑡 (𝑔𝑖) ≠ 𝑛𝑖 then return false end if
𝐿 ← 𝐿 +∑

𝑝𝑖 (𝛽)=0 𝛽 log(𝑔𝑖 (𝛽, 𝑡))
end do

7. return 𝐿

In step 2 of Algorithm EH∗, we try to choose two lucky ho-

momorphisms. The result of Algorithm RT∗(𝐹 (𝑡), 𝑓) is returned
in step 3 if we have failed to choose for ten times. Assume that

two lucky homomorphisms are found. Note that ma𝑧 (𝑅𝑓) is in-
variant under every lucky homomorphism if it belongs to 𝐶 [𝑧]. So
Lemma 4.5 (ii) implies that the integral does not have any complete

logarithmic part if 𝑆 [1] and 𝑆 [2] are unequal. Usually, they are un-

equal if ma𝑧 (𝑅𝑓) has a nonconstant coefficient. Thus, the algorithm

filters out most of the integrands that have no complete logarithmic

part in step 4. The correctness of steps 5 and 6 follows from Proposi-

tion 4.7. Moreover, the nonexistence of complete logarithmic parts

is disclosed as long as a degree constraint is not satisfied in step 6

by Proposition 4.7 (iii).

We now present empirical results. Maple scripts of the above

algorithms and testing examples are available at

https://haodu007.github.io/publication/logpart-paper.

All timings given in the rest of this section are Maple CPU time

and measured in seconds, where “⊘” means that Maple CPU time

exceeds an hour. Experiments were carried out with Maple 2021 on

a computer with imac CPU 3.6GHZ, Intel Core i9, 16G memory.

Our experimental data is generated with the help of the Maple

command randpoly. Each suite of data contains several groups. A

group is indexed by an integer 𝑖 and consists of five examples.

For the algorithms to compute logarithmic parts, a suite of data

was obtained as follows. We set 𝐹 = Q(𝑥, 𝑡1), where 𝑡1 = log(𝑥).
Let 𝑡2 = log(log(𝑥)). Then 𝑡2 was a logarithmic monomial over 𝐹 .

We generated three dense polynomials 𝑢𝑖 , 𝑣𝑖 and𝑤𝑖 of respective

total degrees ⌊𝑖/2⌋ ⌊𝑖/2⌋, and ⌈𝑖/2⌉ in 𝑥 , 𝑡1 and 𝑡2. Set 𝑓𝑖 to be the
𝑡2-proper part of 2𝑢

′
𝑖
/𝑢𝑖 − 3𝑣 ′𝑖 /𝑣𝑖 + 1/𝑤𝑖 . Then 𝑓𝑖 had two constant

residues 2 and -3. The average timings for 𝑖 = 6, 7, . . . , 12 are sum-

marized in Figure 1.

𝑖 6 7 8 9 10 11 12

EH 0.08 0.07 0.10 0.19 0.27 0.45 0.65

RT 0.10 0.17 0.35 1.20 2.52 15.13 32.38

CI 105.21 511.76 1691.64 ⊘ ⊘ ⊘ ⊘
SR 118.25 276.02 2073.99 ⊘ ⊘ ⊘ ⊘
GB 547.97 ⊘ ⊘ ⊘ ⊘ ⊘ ⊘

Figure 1: Logarithmic parts (rational residues)

Next, we show the timings for the algorithms to determine com-

plete logarithmic parts.

We set 𝐹 = Q(𝑥) and 𝑡 = exp

(
−𝑥2/2

)
. Then 𝑡 was a hyperexpo-

nential monomial over 𝐹 . We generated two dense polynomials 𝑢𝑖
and 𝑣𝑖 of total degrees 𝑖 in 𝑥 and 𝑡 . Set 𝑓𝑖 to be the 𝑡-proper part of

4𝑢′
𝑖
/𝑢𝑖 − 6𝑣 ′𝑖 /𝑣𝑖 . The residues of 𝑓𝑖 were 4 and −6. Figure 2 contains

the average timings for 𝑖 = 11, 12, . . . , 16.

𝑖 11 12 13 14 15 16

EH∗ 0.11 0.14 0.17 0.22 0.28 0.34

RT∗ 0.29 0.42 0.55 0.89 1.14 1.71

CI∗ 26.84 52.48 94.58 174.27 324.75 624.26

SR∗ 643.95 1505.84 3219.16 ⊘ ⊘ ⊘
GB∗ 114.86 205.93 326.97 632.11 1073.48 ⊘

Figure 2: Complete logarithmic parts (rational residues)

At last, we set 𝐹 = Q(𝑥, 𝑡1) with 𝑡1 = log(𝑥). Let 𝑡2 be the integral
of 1/𝑡1. Then 𝑡2 was a primitivemonomial over 𝐹 . Let 𝑝 = 5𝑧4−𝑧3+2,
which was irreducible over Q. We generated a sparse polynomial 𝑢𝑖
of total degrees 𝑖 in 𝑦, 𝑥, 𝑡1 and 𝑡2. The option “sparse” was chosen

because dense polynomials in four indeterminates occupied too

much space when their degrees were high. Set 𝑓𝑖 to be the 𝑡2-proper

part of

∑
𝑝 (𝑦)=0 𝑦𝑢

′
𝑖
/𝑢𝑖 . The residues of 𝑓𝑖 were exactly the roots

of 𝑝 . The average timings are summarized in Figure 3, in which

𝑖 = 1, 2, . . . , 6.

https://haodu007.github.io/publication/logpart-paper

Computing Logarithmic Parts by Evaluation Homomorphisms ISSAC 2023, July 24–27, 2023, Tromsø, Norway

𝑖 1 2 3 4 5 6

EH∗ 0.05 0.03 0.04 0.07 0.13 0.16

RT∗ 0.06 1.14 15.94 13.47 411.21 1767.90

CI∗ 0.06 1.10 63.47 39.72 3580.75 ⊘
SR∗ 0.05 2.80 38.60 184.75 ⊘ ⊘
GB∗ 0.08 297.51 ⊘ ⊘ ⊘ ⊘

Figure 3: Complete logarithmic parts (quartic residues)

The high efficiency of Algorithms EH and EH∗ relies on good

performance of the Maple function resultant for expanding the

resultant of 𝑎 − 𝑧 ˜𝑏 and 𝑏 with 𝑎, 𝑏, ˜𝑏 ∈ Q[𝑡], and the function Gcd
for computing greatest common divisors of univariate polynomials

over algebraic number fields [5, 8, 22].

Algorithms RT and RT∗ outperform other elimination-based

algorithms for most of examples. One reason is that the denomina-

tors of our input functions are expressed as the products of several

polynomials due to the way to generate them. Resultant computa-

tion takes advantage of multiplicative expressions, but the other

algorithms ignore any factored form of denominators.

At present, our maple scripts are only applicable to integrands

whose constant coefficients are rational numbers. In fact, Algo-

rithms EH and EH∗ are both valid as long as one can factor univari-

ate polynomials over 𝐶 and perform gcd-computation of a finite

algebraic extension of 𝐶 . Assume further that 𝐶 = Q(𝑤1, . . . ,𝑤𝑚),
where𝑤1, . . . ,𝑤𝑚 are constant indeterminates over Q. We are not

yet able to modify Algorithms EH and EH∗ so that evaluation ho-

momorphisms can be applied to𝑤1, . . . ,𝑤𝑚 nontrivially, because

the special part of a Rothstein-Trager resultant may have coeffi-

cients involving some of the𝑤𝑖 ’s.

5 APPLICATIONS
In this section, we describe some applications arising from additive

decompositions in logarithmic and S-primitive towers.

We denote {1, 2, . . . , 𝑛} by [𝑛]. Let 𝐾0 be a field of characteristic

zero, 𝑡1, . . . , 𝑡𝑛 be𝑛 indeterminates, and𝐾𝑖 = 𝐾0 (𝑡1, . . . , 𝑡𝑖) for 𝑖∈[𝑛].
An element of 𝐾𝑛 is said to be 𝑡𝑖 -proper if it is free of 𝑡𝑖+1, . . . , 𝑡𝑛
and is proper as a univariate rational function in 𝐾𝑖−1 (𝑡𝑖).

Set 𝑃0 to be 𝐾0 [𝑡1, . . . , 𝑡𝑛], 𝑃𝑖 to be the additive subgroup con-

sisting of all polynomials in 𝐾𝑖 [𝑡𝑖+1, . . . , 𝑡𝑛] whose coefficients are

𝑡𝑖 -proper for 𝑖 ∈ [𝑛 − 1], and 𝑃𝑛 to be the additive subgroup con-

sisting of all 𝑡𝑛-proper elements. Then 𝐾𝑛 =
⊕𝑛

𝑖=0 𝑃𝑖 . Let 𝜋𝑖 be the

projection from 𝐾𝑛 to 𝑃𝑖 with respect to the above direct sum. For

an element 𝑓 ∈ 𝐾𝑛 , we have 𝑓 =
∑𝑛
𝑖=0 𝜋𝑖 (𝑓), which is called the

Matryoshka decomposition of 𝑓 with respect to 𝑡1, . . . , 𝑡𝑛 in [4].

From now on, we assume that 𝐾0 = 𝐶 (𝑥), where 𝐶 (𝑥) is the dif-
ferential field given in Example 2.1. The Matryoshka decomposition

of an element in 𝐾𝑛 is always with respect to 𝑡1, . . . , 𝑡𝑛 . Assume

further that 𝑡𝑖 is a primitive and regular monomial over 𝐾𝑖−1 for
each 𝑖 ∈ [𝑛]. Then we have a primitive tower

𝐾0 ⊂ 𝐾1 ⊂ · · · ⊂ 𝐾𝑛
q q q

𝐶 (𝑥) 𝐾0 (𝑡1) 𝐾0 (𝑡1, . . . , 𝑡𝑛)
(5)

whose subfield of constants is equal to 𝐶 .

An element 𝑓 of 𝐾𝑛 is said to be simple if 𝜋0 (𝑓) is 𝑥-simple

and 𝜋𝑖 (𝑓) is 𝑡𝑖 -simple in 𝐾𝑖−1 (𝑡𝑖) for all 𝑖 ∈ [𝑛]. Every element

of L(𝐾𝑛) is simple by [4, Proposition 3.5].

Algorithms in Section 4 helps us determine whether a simple

element of 𝐾𝑛 belongs to L(𝐶𝐾𝑛), where𝐶𝐾𝑛 stands for the small-

est field containing both 𝐶 and 𝐾𝑛 . Since each of the 𝑡𝑖 is regular

over 𝐾𝑖−1, the subfield of constants in 𝐶𝐾𝑛 is equal to 𝐶 .

Proposition 5.1. Let 𝐾𝑛 be the tower given in (5), and 𝑟 ∈ 𝐾𝑛 be
simple. Then 𝑟 ∈ L(𝐶𝐾𝑛) if and only if the integral of 𝜋𝑖 (𝑟) has a
complete logarithmic part with respect to 𝑡𝑖 for all 𝑖 ∈ [𝑛].

Proof. Assume that the integral of 𝜋𝑖 (𝑟) has a complete log-

arithmic part with respect to 𝑡𝑖 for all 𝑖 ∈ [𝑛]. Then the integral

equals its complete logarithmic part with respect to 𝑡𝑖 by Proposi-

tion 3.3. Differentiating the integral, we see that 𝜋𝑖 (𝑟) ∈ L(𝐶𝐾𝑛).
In addition, 𝜋0 (𝑟) ∈ L(𝐶𝐾0) by Example 2.1. So 𝑟 ∈ L(𝐶𝐾𝑛).

Conversely, let 𝑟 ∈ L(𝐶𝐾𝑛). By [4, Lemma 2.6 (ii)], there exist a

𝑡𝑛-simple element 𝑠 ∈ L(𝐶𝐾𝑛)∩𝐾𝑛 andℎ ∈ L(𝐶𝐾𝑛−1)∩𝐾𝑛−1 such
that 𝑟 = 𝑠 + ℎ. Then 𝑠 = 𝜋𝑛 (𝑟). It follows from a direct induction

that 𝜋𝑖 (ℎ) ∈ L(𝐶𝐾𝑖) ∩ 𝐾𝑖 for 𝑖 ∈ [𝑛 − 1]. By the Matryoshka

decomposition, 𝜋𝑖 (𝑟) = 𝜋𝑖 (ℎ) for 𝑖 ∈ [𝑛 − 1]. So the integral of

𝜋𝑖 (𝑟) has a complete logarithmic part w.r.t. 𝑡𝑖 for 𝑖 ∈ [𝑛]. □

The tower 𝐾𝑛 in (5) is said to be S-primitive if 𝑡 ′
𝑖
is simple for

𝑖 ∈ [𝑛]. It is logarithmic if 𝑡 ′
𝑖
∈ L(𝐾𝑖−1) for 𝑖 ∈ [𝑛]. Logarithmic

towers are S-primitive by [4, Proposition 3.5].

Let 𝐾𝑛 be S-primitive. Then Algorithm AddDecompInField
in [4] computes two elements 𝑔, 𝑟 ∈ 𝐾𝑛 such that

𝑓 = 𝑔′ + 𝑟 (6)

with three properties: (i) 𝑟 is minimal in some sense, (ii) 𝑓 is a

derivative in 𝐾𝑛 if and only if 𝑟 = 0, and (iii) 𝑟 is simple if 𝑓 has an

elementary integral over 𝐾𝑛 . The last property is due to the remark

below [4, Theorem 4.10]. We call 𝑟 a remainder of 𝑓 in 𝐾𝑛 .
Let 𝐾𝑛 be logarithmic. By [4, Theorem 4.10], 𝑓 ∈ 𝐾𝑛 has an

elementary integral over𝐾𝑛 if and only if 𝑟 in (6) belongs toL(𝐶𝐾𝑛),
which is equivalent to that the integral of 𝜋𝑖 (𝑟) has a complete

logarithmic part with respect to 𝑡𝑖 for 𝑖 ∈ [𝑛] by Proposition 5.1.

Example 5.2. Let 𝐾0 = C(𝑥) and 𝑡 = arctan(𝑥). Since 𝑡 is a C-
linear combination of two logarithmic derivatives, 𝐾1 = 𝐾0 (𝑡) is loga-
rithmic. Let 𝑎 = −𝑥 (2𝑥2+2)𝑡3−𝑥4𝑡2+𝑥 (2𝑥4+5𝑥2+2)𝑡−(𝑥3+2𝑥)𝑥
and 𝑏 = 𝑡2 (𝑥2 + 1) (𝑥2 + 2) (𝑡 + 𝑥) . Algorithm AddDecompInField
yields 𝑎/𝑏 = (𝑥/𝑡)′ + 𝑟 , where

𝑟 = 𝜋0 (𝑟) + 𝜋1 (𝑟) = −
2𝑥

𝑥2 + 2
+ −𝑡 + 𝑥3 + 𝑥
(𝑥2 + 1)𝑡 (𝑡 + 𝑥)

.

The remainder 𝑟 is simple. But the integral of 𝜋1 (𝑟) has an incomplete
logarithmic part , which is − log(𝑡 + 𝑥). Hence, 𝑓 has no elementary
integral over 𝐾1. In fact,∫

𝑎

𝑏
=
𝑥

𝑡
− log(𝑥2 + 2) − log(𝑡 + 𝑥) +

∫
1

arctan(𝑥) .

Using AddDecompInField and EH∗, we present an algorithm

for determining elementary integrals over a logarithmic tower.

ISSAC 2023, July 24–27, 2023, Tromsø, Norway H. Du, Y. Gao, J. Guo, and Z. Li

Algorithm AddInt_log.
Input: 𝐾𝑛 as in (5), a logarithmic tower over 𝐾0 and 𝑓 ∈ 𝐾𝑛

Output: false if 𝑓 has no elementary integral over 𝐾𝑛 ; an

elementary integral of 𝑓 , otherwise

1. [decompose] compute 𝑔, 𝑟 ∈ 𝐾𝑛 such that 𝑓 = 𝑔′ + 𝑟 by
Algorithm AddDecompInField

2. [detect in-field and non-elementary integrability]
if 𝑟 = 0 then return 𝑔 end if
if 𝑟 is not simple then return false end if

3. [determine complete logarithmic parts] 𝑠 ← 𝑔

for 𝑖 from 1 to 𝑛 do
if 𝜋𝑖 (𝑟) ≠ 0 then
𝑢 ← Algorithm EH∗(𝐾𝑖−1 (𝑡𝑖), 𝜋𝑖 (𝑟))
if 𝑢 = false then return false end if
𝑠 ← 𝑠 + 𝑢

end if
end do

4. return 𝑠 +
∫
𝜋0 (𝑟)

The correctness of this algorithm is due to properties (ii) and (iii)

of Algorithm AddDecompInField, and Proposition 5.1.

We compared efficiency of the above algorithm with the Maple

function int. Every integrand in our experimental data had an

elementary integral over Q(𝑥) so that int would not need to look

for any closed-form beyond elementary functions.

In the first suite of experimental data, we set 𝐾2 = Q(𝑥, 𝑡1, 𝑡2),
where 𝑡1 = log(𝑥) and 𝑡2 = log(log(𝑥)). We generated four dense

polynomials 𝑝𝑖 , 𝑞𝑖 , 𝑟𝑖 , 𝑠𝑖 in 𝑥, 𝑡1 and 𝑡2 of respective total degrees

⌈𝑖/2⌉, ⌊𝑖/2⌋, 𝑖 and 𝑖 . Set the integrand 𝑓𝑖 = (𝑝𝑖/𝑞𝑖)′−3𝑟 ′𝑖 /𝑟𝑖 +2𝑠
′
𝑖
/𝑠𝑖 .

The average timings are summarized in Figure 4, in which A stands

for our maple scripts for Algorithm AddInt_log.

𝑖 4 5 6 7 8 9 10

A 0.50 6.86 27.71 17.37 32.65 402.75 506.58

int 0.70 7.61 31.35 29.47 51.74 376.05 574.73

Figure 4: Elementary integrals (rational residues)

All residues of the nonzero projections of remainders were ra-

tional numbers in this suite. Algorithm AddInt_log and int per-
formed almost equally well.

In the second suite, the monomial extension of Q(𝑥) is the same

as that in the first. We generated two dense polynomials 𝑝𝑖 and

𝑞𝑖 of total degree 𝑖 in 𝑥, 𝑡1 and 𝑡2, a sparse polynomial 𝑟𝑖 of total

degrees ⌊𝑖/2 + 1⌋ in 𝑦, 𝑥 , 𝑡1 and 𝑡2, and a sparse polynomial 𝑠𝑖 of

total degree ⌈𝑖/2 + 1⌉ in 𝑦, 𝑥 and 𝑡1. Set the integrand to be

𝑓𝑖 =

(
𝑝𝑖

𝑞𝑖

)′
+

∑︁
3𝑦2+𝑦−1=0

𝑦
𝑟 ′
𝑖

𝑟𝑖
+

∑︁
𝑦2+1=0

𝑦
𝑠′
𝑖

𝑠𝑖
.

The average timings are summarized in Figure 5.

The nonzero projections of remainders may have quadratic

residues in this suite. Algorithm AddInt_log outperformed int as

the index 𝑖 was increasing.

For the examples in the two suites, Algorithm AddInt_log only

slowed down slightly when Algorithm EH∗ was replaced with

Algorithm RT∗. But this was not the case for the last suite of data.

𝑖 6 7 8 9 10 11 12

A 4.58 4.33 8.17 26.22 84.77 170.99 492.85

int 11.14 16.54 37.31 101.88 ⊘ ⊘ ⊘

Figure 5: Elementary integrals (quadratic residues)

We set 𝐾1 = Q(𝑥, 𝑡) with 𝑡 = log(𝑥), and generated two dense

polynomials 𝑎𝑖 and𝑏𝑖 of total degrees 𝑖 in 𝑥 and 𝑡 . Moreover, a dense

polynomial𝑔𝑖 was generated inQ[𝑥,𝑦, 𝑡] whose total degree is 𝑖 . Set
the integrand 𝑓𝑖 = (𝑎𝑖/𝑏𝑖)′+

∑
𝑦3+𝑦−1=0 𝑦𝑔

′
𝑖
/𝑔𝑖 . The average timings

are summarized in Figure 6, where AR stands for the algorithm

that replaces Algorithm EH∗ in step 3 of Algorithm AddInt_log
by Algorithm RT∗ given in Section 4.

𝑖 11 12 13 14 15 16

A 5.45 11.48 16.61 27.06 49.30 72.42

AR 129.06 233.77 361.06 541.10 901.61 1239.29

int 325.64 697.95 1275.67 2048.20 3331.69 ⊘

Figure 6: Elementary integrals (EH∗ vs RT∗)

The timings in this figure reveal that Algorithm EH∗ improves

the efficiency of algorithms for indefinite integration as far as inte-

grals have dense logarithmic parts involving irrational residues.

Remark 5.3. We also used Mathematica 12 and 13.1 to compute
the integrals of examples in our data. Unfortunately, the command
Integrate returned unevaluated integrals from time to time. So it is
difficult for us to make any further comparison.

Let 𝐾𝑛 be S-primitive but not logarithmic, and 𝑓 ∈ 𝐾𝑛 . By (6)

and [4, Theorem 4.10], 𝑓 has an elementary integral over 𝐾𝑛 if and

only if 𝑟 ∈ span𝐶
{
𝑡 ′
1
, . . . , 𝑡 ′𝑛

}
+ L(𝐶𝐾𝑛) . The latter condition can

be verified by [11, Theorem 3.9].

Example 5.4. Let 𝐾0 = Q(𝑥) and 𝐾3 be generated by 𝑡1 = log(𝑥),
𝑡2 = Li(𝑥) and 𝑡3 = log(log(𝑥)).We determine an elementary inte-
gral of 𝑓 whose additive decomposition is equal to 𝑔′ + 𝑟 , where

𝑔 = 𝑥𝑡3 +
𝑡2
2

2

− 𝑡2𝑥
𝑡1
− 𝑥

2

𝑡1
a𝑛𝑑 𝑟 =

2

𝑥
− 24𝑥 − 11

6𝑥𝑡1
+ 1

𝑡1𝑡2
.

By a minor variation of the algorithm contained in the proof of [11,
Theorem 3.9], we see that 𝑟 belongs to −4𝑡 ′

2
+L(Q𝐾3). In other words,

𝑟 + 4𝑡 ′
2
∈ L(Q𝐾3). Note that each

∫
𝜋 𝑗 (𝑟 + 4𝑡 ′

2
) has a complete

logarithmic part with respect to 𝑡 𝑗 , 𝑗 = 1, 2, 3. Indeed, Algorithm
EH yields the complete logarithmic parts of the integrals of the three
projections. It turns out

∫
𝑓 = 𝑔+2 log(𝑥)+11/6 log(𝑡1)+log(𝑡2)−4𝑡2 .

The integral of 𝑓 is elementary over 𝐾3 but not over 𝐾0.

ACKNOWLEDGMENTS
We thank Shaoshi Chen, James Davenport, Hui Huang, George

Labahn, Clemens Raab and Elaine Wong for their encouragement,

timely assistance and helpful comments. Special thanks go to the

anonymous referees for their constructive suggestions and careful

corrections.

Computing Logarithmic Parts by Evaluation Homomorphisms ISSAC 2023, July 24–27, 2023, Tromsø, Norway

REFERENCES
[1] Manuel Bronstein. 2005. Symbolic Integration I: Transcendental Functions (second

ed.). Springer, Berlin Heidelberg New York.

[2] Günter Czichowski. 1995. A note on Gröbner bases and integration of rational

functions. Journal of Symbolic Computation 20 (1995), 163–167.

[3] James H. Davenport. 1986. The Risch differential equation problem. SIAM J.
Comput. 15 (1986), 903–918.

[4] Hao Du, Jing Guo, Ziming Li, and Elaine Wong. 2020. An additive decomposition

in logarithmic towers and beyond. In Proceedings of the 45th International Sym-
posium on Symbolic and Algebraic Computation (ISSAC’20). Lille, France, ACM,

New York, 146–153.

[5] Mark J. Encarnación. 1995. Computing GCDs of polynomials over algebraic

number fields. Journal of Symbolic Computation 20 (1995), 299–313.

[6] Keith O. Geddes, Stephen R. Czapor, and George Labahn. 1992. Algorithms for
Computer Algebra. Kluwer Academic Publishers.

[7] Jing Guo. 2021. Additive Decompositions in Primitive Towers with Applications.
Ph.D. Dissertation. Chinese Academy of Sciences, Beijing, China (in Chinese).

[8] SeyedM.M. Javadi andMichael Monagan. 2009. In-place arithmetic for univariate

polynomials over an algebraic number field. In Proceedings of the Joint Conference
of ASCM 2009 and MACIS 2009 (COE Lecture Note, 22). Kyushu University, 330–

341.

[9] Daniel Lazard and Renaud Rioboo. 1990. Integration of rational functions: Ra-

tional computation of the logarithmic part. Journal of Symbolic Computation 9

(1990), 113–115.

[10] Thomas Mulders. 1997. A note on subresultants and the Lazard/Rioboo/Trager

formula in rational function integration. Journal of Symbolic Computation 24

(1997), 45–50.

[11] Clemens G. Raab. 2012. Definite Integration in Differential Fields. Ph.D. Disserta-
tion. RISC-Linz, Johannes Kepler University, Linz, Austria.

[12] Clemens G. Raab. 2012. Using Gröbner bases for finding the logarithmic part

of the integral of transcendental functions. Journal of Symbolic Computation 47

(2012), 1290–1296.

[13] Clemens G. Raab and Michael F. Singer. 2022. Integration in Finite Terms: Funda-
mental Sources. Text & Monographs in Symbolic Computation, Springer.

[14] Robert H. Risch. 1969. The problem of integration in finite terms. Trans. Amer.
Math. Soc. 139 (1969), 167–189.

[15] Robert H. Risch. 1970. The solution of integration in finite terms. Bull. Amer.
Math. Soc. 76 (1970), 605–608.

[16] Joseph F. Ritt. 1948. Integration in Finite Terms. Liouville’s Theory of Elementary
Methods. Columbia University Press, New York.

[17] Maxwell Rosenlicht. 1968. Integration in finite terms. Amer. Math. Monthly 24
(1968), 153–161.

[18] Maxwell Rosenlicht. 1972. Liouville’s theorem on functions with elementary

integrals. Pacific J. Math. 79 (1972), 963–972.
[19] Michael Rothstein. 1976. Aspects of Symbolic Integration and Simplification of

Exponential and Primitive Functions. Ph.D. Dissertation. University of Wisconsin,

Madison, the United States.

[20] Michael Rothstein. 1977. A new algorithm for the integration of exponential and

logarithmic functions. In Proceedings of the 1977 MACSYMA Users Conference.
263–274.

[21] Barry M. Trager. 1976. Algebraic factoring and rational function integration. In

Proceedings of SYMSAC’ 76. ACM, New York, 219–226.

[22] Mark van Hoeij and Michael Monagan. 2002. A modular GCD algorithm over

number fields presented with multiple field extensions. In Proceedings of the 27th
International Symposium on Symbolic and Algebraic Computation (ISSAC’ 02).
Lille, France, ACM, New York, 109–116.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Logarithmic parts
	4 Algorithms
	5 Applications
	Acknowledgments
	References

